Other Approaches to Safety

Dirk Dunning, PE Oregon Department of Energy

Lessons from Chernobyl

- Bad design kills
- Mitigating bad design kills
- People forget reasons for mitigations
- Safety must be baked into the design
- Decisions on the fly can kill
- Operating outside the design envelope can and often does have disastrous consequences
- Complex designs defy understanding and lead to errors

Standard Engineering Design

- Robust
- Elegant
- Simple K.I.S.S.: Keep it Simple Stupid!
- Failsafe
- Design for failure
- Strict codes
 - (laws, regulations, lessons learned)
- Licensure and direct accountability

U.S. Nuclear Navy

- Reactor safety first, last and always
 - No one ever allowed to violate reactor safeguards.
 - Do so and you are done no 2nd chances
- Verbatim compliance with procedures
- Extraordinary well-trained diligent staff
 - 100% selected by "the Admiral"
- Immediate analysis and response to incidents
- Continuous retraining & direct accountability
- Direct Responsibility, Accountability, Authority
 - Not theoretical. Once qualified you do the job.
 - Everyone learns from everyone else's errors
 - Everyone responsible to challenge safety
- Robust, Simple, Elegant, Overbuilt

Resilience Engineering

- Safety:
 - ability to succeed under varying conditions
- Robust yet flexible processes;
- Prepare to be surprised
- Range of outcomes vs. consequences
- Continuously monitor and revise risk models
- Adapt in the face of disruptions or pressures
- Adjust performance to the current conditions
- Anticipate shape of risk before damage occurs
 - Failure: adaptation to cope with real world complexity, and
 - Not Breakdown of normal system functions

Inherent Safe Design

- Safety, health and environmental protection built into process design and operation
- Minimize hazards and materials
 - What you don't have, can't leak
 - Substitute, minimize, moderate, simplify
 - Reduce potential consequences
- Inherent > Passive > Active > Procedural
- Focus on experience of people, processes, knowledge, history
- Focus also on human factors as safety issues
 - Design, motivation, complexity, training, belief, physical factors and more...

NRC Principles for a Strong Nuclear Safety Culture

• Safety Culture:

- An organization's values and behaviors modeled by its leaders and internalized by its membersthat serve to make nuclear safety the overriding priority
- Safety-Conscious Work Environment
- Collective Responsibility

NRC Principles for a Strong Nuclear Safety Culture (cont.)

- 1. Everyone personally responsible
- 2. Leaders demonstrate commitment
- 3. Trust permeates the organization
- 4. Decision-making reflects safety first
- 5. Nuclear technology special and unique
- 6. Questioning attitude cultivated
- 7. Organizational learning embraced
- 8. Safety undergoes constant examination